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The Big-p Problem
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The Big-p Problem (n << p) |

When we have a data set with a very large number of variables (parameters) p in relation to
the number of observations (individuals) n, that is, n << p, we commonly say that we have a
big-p problem (sometimes big-p, little-n).

The techniques of Principal Component Analysis (PCA), Discriminant Analysis (DA) and
Canonical Correlation Analysis (CCA) work well in the task of dimensionality reduction for the

classical case (n > p), however, in the case where n << p, these techniques are not convenient.

An alternative to overcome this problem is the use of sparse methods, which are adaptations of
these techniques for the case n << p using penalties and regularizations.
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The Big-p Problem (n << p) Il

Using penalization and regularization techniques we obtain the sparse versions of PCA, DA and
CCA (which we will discuss in the next slides):

» Sparse Principal Component Analysis (Sparse PCA or sPCA);
» Sparse Discriminant Analysis (Sparse DA or sDA);
» Sparse Canonical Correlation Analysis (Sparse CCA or sCCA).

Sparsity: A vector x (or matrix X) is said to be sparse if many of its entries x; (x;) are equal
to zero.
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Sparse Principal Component Analysis
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Principal Component Analysis

A Review of Principal Components and Principal Coordinates

Let X = X,xp be a data matrix. We have already seen that we can obtain the k-th principal
component (PC), denoted by Z, by the spectral decomposition of the covariance matrix, i.e.
Y = VDV’ = Z; = XV, where Vj are the column vectors of V (eigenvectors).

Equivalently, Zx can be obtained through the singular value decomposition (SVD) of X, i.e.
X = UN/2V'":
Zi = U2, (1)

where U are the column vectors of U and /\,{i2 are the singular values. In this case, Zj are
called principal coordinates (PCo). We can obtain equation (??) using multidimensional
scaling from the matrix of Euclidean distances between the observations.

Equivalence between PC and PCo: The PCo analysis of the Euclidean distance matrix (n x n
matrix) is equivalent to the PC analysis of the covariance matrix (p x p matrix) .
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Sparse Principal Component Analysis

When we have a problem n << p, the disadvantage of performing “classical” PCA
comes from the fact that the PCs are linear combinations of all p input variables, and
since the number p is very large, the computational effort required to perform the
computations is exaggeratedly large. An alternative to this problem is to use Sparse
Principal Component Analysis.

For n << p, the interest is to make a selection of the most important variables, for the
purpose of reducing the dimensionality (reduce p). Therefore, more than obtaining the
reduction vectors through PCs, we want to obtain this reduction by means that
penalize those variables that must be eliminated (brought to null), that is, obtain
eigenvectors V' that assign zero load to some variables. To do this, we use regression
algorithms: penalized solutions and regularized solutions.
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Sparse Principal Component Analysiss - LASSO |

Penalized PC (LASSO)

We want to predict the principal components (Zx) based on linear combinations of the
data matrix X with vectors 3 (i.e., we want to find §'s such that X3 ~ Zj).

Lagrangian Penalty:

Blasso:arg mInB{HZk_XBH%J'_AH/BHl}? (2)

where ||.||2 is the Euclidean norm, ||.||1 is the #* norm and X is the penalty parameter:
if \ = 0 = Least Squares solution, if A\ = co = 8 — 0. The PCs Zj of equation (?7?)
are known, obtained by multidimensional scaling in R"*" (i.e. Z is the k-th principal

coordinate).

Limitation: The number of non-zero (3 is at most n.
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Sparse Principal Component Analysis - LASSO I
Penalty in the restriction form:

Similarly, we can formalize the model by explaining the restriction in the vector 3. For
the two-dimensional case, we have:

Pictorially:

N n Bz A
Box1 = arg ming ¥y (Ziy — X-’,6’)2.
* ’ ; ' , ( Solution:

First point where the
ellipse intersects
the constraint

1B1] + [B2] < c. >

-C C B
1

Sparse solution: [31 =0

Penalized PC (lasso)
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Sparse Principal Component Analysis - Ridge Regression |

Regularized PC (Ridge Regression)

Replacing the ¢} norm with the Euclidean norm in the LASSO model, we obtain a
regularized estimate for S known as Ridge Regression:

Lagrangian regularization:

Bridge = arg ming{||Zk — XB]13 + A|BI13}, (3)

where A is the regularization parameter: if A — 0 = Least Squares solution, if A — oo
= 8 — 0. The PCs Zj of equation (??) are known, obtained by multidimensional
scaling (in R™*M).
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Sparse Principal Component Analysis - Ridge Regression Il

Regularization in the restriction form:

Analogously, we can formalize the model by explaining the restriction in the vector 5.
For the two-dimensional case, we have:

Pictorially:
B F N
n 2
A _ : Y/ 2\2
'O72X1 = arg ming E (Z’k Xiﬁ) ’ Solution:
i=1 First point where the
ellipse intersects
the constraint
512 + 3% <c. -C C ﬁ>
1
Less sparse solution: B1 =0

Regularized PC (Ridge Regression)
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Sparse Principal Component Analysis - Elastic Net

Penalized and Regularized PC (Elastic Net; Zou et al. [?])

The following model, known as Elastic Net, is a generalization of the LASSO model,
and was introduced by Zou and Hastie [?]:

Ben = arg ming{||Zx — XBI3 + Adl|BI13 + Al 5111}, (4)

where A1 is the regularization parameter and Ay is the penalty parameter. We can fix
A1 and X or obtain them by cross-validation.

Advantage: All variables can be selected (there is no limitation on the number of
non-zero charges).
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Sparse Principal Component Analysis

From the estimates of the 3 vectors obtained by one of the previous models
(Blassos Bridge, Ben), We obtain the approximation for the principal components Zj:

Ze = XV, (5)
where
V=1 (6)

1812

For more details on sparse PCA, see Zou et al. [?] and Hastie et al. [?].
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Sparse Principal Component Analysis - Example (Breast. TCGA)

Implementation in R - ElasticNet

Sparse PCA is implemented in R in the elasticnet [?] package. In the following
example, we use data from R'’s Bioconductor (Breast.TCGA).

Data: Breast.TCGA: Three databases (X1=mRNA, X2=miRNA and X3=Protein)
evaluated on 150 individuals:

X1=mRNA: (breast.TCGA$data.train$mRNA) n = 150, p = 200. (n << p)
X2=miRNA: (breast.TCGA$data.train$mRNA) n = 150, p = 184. (n << p)
X3=Protein: (breast.TCGA$data.train$mRNA) n = 150, p = 142. (n > p)

Subtypes of cancers: (breast. TCGAS$data.train$subtype) basal: 45; Her2: 30; LumA:
75.
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Sparse Principal Component Analysis - Biplots

Principal
Coordinates (PCo)

mRNA - PC 34%
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miRNA - PC 32%
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Sparse PC
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Protein - sPC 39%
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ALl

The biplots for the X3 (Protein) data are identical,
because in this case we have n > p,

X2 miRNA - sPC 28% that is, it is not a big-p problem.
02 00 02
o PCo: prcomp() (Stats) Sparse PCs:
= SPCA() (ElasticNet)
% 2 x1.pc <- prcomp (x1)
xl.spca <- spca(xl, K = 2,
i biplot (xl.pe$x[,1:2], type = “predictor”,
' x1l.pcSrotation[,1:2], sparse = “penalty”,
40 0 40 80 var.axex=TRUE, main="mRNA - para = rep(le-05, 2))

L}
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Sparse Discriminant Analysis
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Discriminant Analysis

In discriminant analysis (Fisher linear), as we have grouped observations, we consider
the decomposition of the covariance matrix into two components: covariance due to
the between groups effect and covariance due to the within groups effect,

Ypxp = XB,., T LW,,,- From this, we are interested in solving the following
optimization problem:

(7)

In other words, we want to find vectors / such that maximize the ratio (??). This
problem is equivalent to finding the eigenvalues and eigenvectors of ZWLZB, which is
equivalent to finding solutions of the determinant equation:

1T T — Mp| = 0. (8)
We assume homoscedasticity in the groups.
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Sparse Discriminant Analysis |

However, in the case where n << p (big-p), the inverse of the covariance matrix within
groups, Xy, does not exist (it is singular), since the rank of this matrix is in maximum
n. An alternative to correct the problem of the incomplete rank of ¥, is to use Sparse
Discriminant Analysis (sDA). In the following, we present the sDA models proposed by
Witten et al. [?] and Clemmensen et al. [?].

Regularization through Q matrix

We can find a positive-definite diagonal matrix Q such that

(Zw +Q)—dl,|=0; d>0. (9)

If all the eigenvalues of a matrix are positive, then it is invertible (non-singular).
Algorithms for obtaining the matrix Q are discussed in Hastie et al. [?].
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Sparse Discriminant Analysis |l

!
. pN
Hence our optimization problem, maxg, g&i@iv becomes:
k

B X8 bk
O BT w + Q) (10)

Equivalently, we can find a positive-definite matrix € such that the discriminant
vectors of the optimization problem

maxg, { 8,85k}, (11)

where 3, (Zw + Q)Bk =1 and B, (Xw + Q)8 =0, VI < k, can be calculated, even
when n << p.
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Sparse Discriminant Analysis Il

Furthermore, we want the load vectors (discriminant vectors) [ to be sparse. A way
to obtain these vectors is by applying the /1 (LASSO) penalty to the previous
optimization problem, resulting in the following problem:

maxg, {3 BBk — V||Bll1}, (12)

where B (Xw + Q)Bk =1 and B (Xw + Q)8 =0, VI < k, can be calculated, even
when n << p. This method was proposed by Witten and Tibshirani [?].
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Sparse Discriminant Analysis IV

Another sparse discriminant analysis (sDA) method, proposed by Clemmensen et al.
[?], is defined sequentially as follows. The k-th pair (6x, Bx) is the solution to the
problem:

ming, o, { | GO — XBil13 + 78428k + AllBel 1} (13)

where %GZG’GH;( =1and 0, G'GH; =0, VI < k, where by, , are the group weight
vectors, G« is a group incidence matrix (composed by 0's and 1's) and v and A are
the non-negative regularization and penalization parameters. The ¢! penalty on (i
results in sparsity when X is large.

The [k vector that resolves (?7?) is called the k-th discriminant vector of the sDA.
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Sparse Discriminant Analysis V

To solve (?7), we use a simple iterative algorithm to obtain a local optimum for (?7).
The algorithm involves keeping 6 fixed and optimizing with respect to i, and
keeping (i fixed and optimizing with respect to 6. For fixed 6, we obtain:

ming, {11GO — X8kl + 18428k + A8l }- (14)

Note that for Q =/, (??) is exactly an ElasticNet problem.
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Sparse Discriminant Analysis - Example (Breast. TCGA)

Implementation in R - sparseLDA

sDA is implemented in R in the sparseLDA package [?]. In the following example, we
use the same data (Breast.TCGA) that was used in the previous example.

Remember that the data from this set is classified into three groups of subtype of
cancers:

G1: basal: 45; G2: Her2: 30; G3: LumA: 75.

In other words, we have N = 3 groups, G = G1 U G2 U G3, with a total of
#(G) = 45 + 30 + 75 = 150 individuals.
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Sparse Discriminant Analysis - Scores e Loads

X1 (MRNA):

Variable loads: Group weight matrix:
Scores (discriminant

A A A A
functions): B, B, 0, 0,

A A
XBy  XB, 0.00000000 -0.6549641 13460511 -0.7163423
Lot Lb2 -1.14725442  0.0000000 03220238 2.0027743
AOFJ 1.822563 -0.90566072 1.48943562  0.0000000 0.0289263 -0.3495280
ADGO 1817337 -032230828
AODA 2772156 -223228933 0.05294696  0.0000000
AOB3 2220491 -0.74279549 0.00000000 -0.7050653
ADI2  3.422815 -2.11782785

0.00000000 2.0153849 Incidence matrix

AORT 2787478 -196255080 GnxN = G150x3

A131 1487769 200316138

maxIte 25, trace = TRUE)

Af24 1400891 -0.88102122 100

(LD 2RED QY Discriminant variables: 100

A1AZ 3.487032 0.09911661 sda() (sparseLDA) 100

AOYM 3206956 -1.17263109

AP 1871571 -0.46004985 sda.xl <- sda(xlt, yt, Too

AGAT 3113374 041541073 lambda = le-6, stop = -3, 100
00

ADAT 2106453 0.81454297

u]
@
I
ul
it
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X1 (MRNA):

Representation of predicted groups for training
data in sparse discriminant variables
(LD1, LD2):

Predition_mRNA - sDA (training)
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G1: basal
G2: Her2
G3: LumA
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Sparse Discriminant Analysis - Classification

Classification accuracy (training data):

class.vector: Basal = 1; Her2 = 2, LumA = 3

class.vector Basal Her2 LumA
1 38 1 1
2 1 21 4
3 1 4 62

yt
Basal Her2 LumA
49 26 67

Accuracy:
0.909774436090226

u]
@
I
ul
it




Sparse Canonical Correlation Analysis
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Classical Canonical Correlation Analysis

Consider the data matrix X, (p+q) = (X1,, X2,.,)- Let ngl and X3X1 be the
original variables such that:

X1 " > >
) ~iid ) = H1 Y = 11 212 ‘
X 2 Yo1 X
Canonical correlation analysis aims to solve the following optimization problem: find
vectors a, b such that maximize the correlation coefficient Corr(a’Xl, b’X2), that is,

max, p { Cov(a X2, bX7) }z max, b { r12b } (15)
7 L /Cov(aX1)/Cov(b' X?) *? \/aTiay/b' bl
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Sparse Canonical Correlation Analysis

However, when we have n << p and n << q, occurs the impasse that the matrices ¥1; and
Y2 are singular (non-invertible). Furthermore, classical CCA results in vectors U, V that are
not sparse, and these vectors are not unique if p or q exceeds n. An alternative to overcoming
this problem is to use Sparse Canonical Correlation Analysis (sCCA).

For sCCA, Witten et al. [?] proposed a penalized solution for the singular value decomposition
(SVD) of matrices, called Penalized Matrix Decomposition (PMD).

This method does not involve the inverses of the covariance matrices, but the cross-product
matrix X{Xz. Applying PMD to this cross-product matrix, we obtain a penalized method for
CCA.

To this aim, we will work with centered and scaled columns X; and X5. Also, we will use
sample correlation, which, for centered x,y € R™, is given by:

x'y
COr(X,y) = m (16)
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Sparse Canonical Correlation Analysis - PMD |

Penalized Matrix Decomposition (PMD)
Consider the SVD decomposition, X = UDV’, U'U = I,, V'V = I,. Let Uy and Vj be
the column vectors of U and V/, respectively, and d, be the diagonal elements of D. In

[?], the following generalization of the approximation of X through least squares (first
proposed by Eckart et al. [?]) was proposed:

minUkka,dk{HX_deleiH%L (17)

with restrictions ||Uk|3 < 1, [|Ukllr < c; | VKl3 < 1, || Vil € ca.
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Sparse Canonical Correlation Analysis - PMD I

In [?], as a corollary of theorem 2.1, it was verified that the previous problem is
equivalent to the following maximization problem:

maxUk,Vk{U,iXVk},
with restrictions ||Uk|3 < 1, [|Ukllr < c; |[VKl3 < 1, | Vil < ca.

One solution is to fix U and get V; fix V and get U:
- Fixed Vi maxy, {UpXViki [[UB < 1, Uil < @ 1< a1 < v/,
- Fixed Ux: maxy, {U; XVi}i [[VKl3 <1, |[Vkl1 < @, 1 < e < /P

This algorithm is spelled PMD(L;, L;).
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Sparse Canonical Correlation Analysis - Penalized sCCA via PMD

Sparse canonical correlation analysis uses the PMD(L;, L) algorithm (sCCA Penalized via
PMD), considering the SVD decomposition of the matrix X{ X, (sample covariance matrix), as
follows (for the norm ¢%):

maxak,bk{(Xlak)’ngk} = maxak’bk{a;(X{Xzbk}, (19)
with restrictions &) X{ Xiax < 1, ||ak||1 < c1 e b X5Xobk <1, ||bkl|1 < co.

Assuming that for high-dimensional data the diagonal covariance matrix can be adopted
(CCA-P Diagonal), the previous restrictions become:

al X{ Xiax = ajax <1, pois X{X1 = I,, e b X3Xoby = bj.bx < 1, pois X5X, = .

Another approach to sCCA can be found in Suo et al. [?].
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Sparse Canonical Correlation Analysis - Example (Breast. TCGA)

Implementation in R - PMA

sCCA is implemented in R in the PMA (Penalized Multivariate Analysis) package [?].
In the following example, we use the same data (Breast.TCGA) that was used in the
previous two examples. However, we now want to analyze the pairwise correlation of
the three multivariate databases:

Integration X1_X2: max, p{cor(Xia, X2b)}

Integration X1_X3: max, p{cor(Xia, X3b)}

Integration X2_X3: max, p{cor(X2a, X3b)}
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Sparse Canonical Correlation Analysis - sCCA on X1_X2

Integration X1_X2
uandv

Sparse canonical L
P maximize u'X1'X2v

Observations represented on canonical

vectors:
axes U1 x V1 e U2 xV2:
U1 x V1; Coef.Corr = 0.88 U2 x V2; Coef.Corr = 0.78 V= (v, v2): u = (ul, u2):
sCCA via PMD:
. N - 00000000 0 00 CCA() (PMA)
© | -+ 0.0000000 0O 00
o . i
.* e 0.0000000 0 00 scca.l2 <- CCA(xl,x2,typex=
e 0.0000000 0 00 “standard”, typez="standard”,
b o .: o R=2)
cpd . e 0.0000000 0 00
#'s
ng. - 0.1562996 0 ]
= 37 - = °]
s AR &
¥ o : % ¢ ¥ ¢
T e Canonical variables: U = (U1 U2) = (X1*u1 X1*u2
W, o . anonical variables: U = ( )= (X1*u u2)
K, ° e V= (V1V2) = (X2*v1 X2*v2)
PEA *’.
‘ ‘ « &
.| ¢ M o Y Canonical correlation coefficients:
24 %
' *
e 3 . Cor(X1*ul, X2*v1), Cor(X1*u2, X2*v2):
— T T T T
04 00 02 04 08 05 00 05 0.88443973794229  0.779709063287576
ux1.12[, 1] ux1.12[, 2]

u]
@
I
ul
it
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