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The Big-p Problem
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The Big-p Problem (n << p) I

When we have a data set with a very large number of variables (parameters) p in relation to
the number of observations (individuals) n, that is, n << p, we commonly say that we have a
big-p problem (sometimes big-p, little-n).

The techniques of Principal Component Analysis (PCA), Discriminant Analysis (DA) and
Canonical Correlation Analysis (CCA) work well in the task of dimensionality reduction for the
classical case (n > p), however, in the case where n << p, these techniques are not convenient.

An alternative to overcome this problem is the use of sparse methods, which are adaptations of
these techniques for the case n << p using penalties and regularizations.
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The Big-p Problem (n << p) II

Using penalization and regularization techniques we obtain the sparse versions of PCA, DA and
CCA (which we will discuss in the next slides):

▶ Sparse Principal Component Analysis (Sparse PCA or sPCA);

▶ Sparse Discriminant Analysis (Sparse DA or sDA);

▶ Sparse Canonical Correlation Analysis (Sparse CCA or sCCA).

Sparsity: A vector x (or matrix X ) is said to be sparse if many of its entries xi (xij) are equal
to zero.
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Sparse Principal Component Analysis
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Principal Component Analysis

A Review of Principal Components and Principal Coordinates

Let X = Xn×p be a data matrix. We have already seen that we can obtain the k-th principal
component (PC), denoted by Zk , by the spectral decomposition of the covariance matrix, i.e.
Σ = VDV ′ ⇒ Zk = XVk , where Vk are the column vectors of V (eigenvectors).

Equivalently, Zk can be obtained through the singular value decomposition (SVD) of X , i.e.
X = UΛ1/2V ′:

Zk = UkΛ
1/2
kk , (1)

where Uk are the column vectors of U and Λ
1/2
kk are the singular values. In this case, Zk are

called principal coordinates (PCo). We can obtain equation (??) using multidimensional
scaling from the matrix of Euclidean distances between the observations.

Equivalence between PC and PCo: The PCo analysis of the Euclidean distance matrix (n × n
matrix) is equivalent to the PC analysis of the covariance matrix (p × p matrix) .
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Sparse Principal Component Analysis

When we have a problem n << p, the disadvantage of performing “classical” PCA
comes from the fact that the PCs are linear combinations of all p input variables, and
since the number p is very large, the computational effort required to perform the
computations is exaggeratedly large. An alternative to this problem is to use Sparse
Principal Component Analysis.

For n << p, the interest is to make a selection of the most important variables, for the
purpose of reducing the dimensionality (reduce p). Therefore, more than obtaining the
reduction vectors through PCs, we want to obtain this reduction by means that
penalize those variables that must be eliminated (brought to null), that is, obtain
eigenvectors V that assign zero load to some variables. To do this, we use regression
algorithms: penalized solutions and regularized solutions.
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Sparse Principal Component Analysiss - LASSO I

Penalized PC (LASSO)

We want to predict the principal components (Zk) based on linear combinations of the
data matrix X with vectors β (i.e., we want to find β’s such that Xβ ≈ Zk).

Lagrangian Penalty:

β̂lasso = arg minβ{||Zk − Xβ||22 + λ||β||1}, (2)

where ||.||2 is the Euclidean norm, ||.||1 is the ℓ1 norm and λ is the penalty parameter:
if λ → 0 ⇒ Least Squares solution, if λ → ∞ ⇒ β → 0. The PCs Zk of equation (??)
are known, obtained by multidimensional scaling in Rn×n (i.e. Zk is the k-th principal
coordinate).

Limitation: The number of non-zero β is at most n.
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Sparse Principal Component Analysis - LASSO II

Penalty in the restriction form:

Similarly, we can formalize the model by explaining the restriction in the vector β. For
the two-dimensional case, we have:
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Sparse Principal Component Analysis - Ridge Regression I

Regularized PC (Ridge Regression)

Replacing the ℓ1 norm with the Euclidean norm in the LASSO model, we obtain a
regularized estimate for β known as Ridge Regression:

Lagrangian regularization:

β̂ridge = arg minβ{||Zk − Xβ||22 + λ||β||22}, (3)

where λ is the regularization parameter: if λ → 0 ⇒ Least Squares solution, if λ → ∞
⇒ β → 0. The PCs Zk of equation (??) are known, obtained by multidimensional
scaling (in Rn×n).
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Sparse Principal Component Analysis - Ridge Regression II

Regularization in the restriction form:

Analogously, we can formalize the model by explaining the restriction in the vector β.
For the two-dimensional case, we have:
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Sparse Principal Component Analysis - Elastic Net

Penalized and Regularized PC (Elastic Net; Zou et al. [?])

The following model, known as Elastic Net, is a generalization of the LASSO model,
and was introduced by Zou and Hastie [?]:

β̂en = arg minβ{||Zk − Xβ||22 + λ1||β||22 + λ2||β||1}, (4)

where λ1 is the regularization parameter and λ2 is the penalty parameter. We can fix
λ1 and λ2 or obtain them by cross-validation.

Advantage: All variables can be selected (there is no limitation on the number of
non-zero charges).
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Sparse Principal Component Analysis

From the estimates of the β vectors obtained by one of the previous models
(β̂lasso , β̂ridge , β̂en), we obtain the approximation for the principal components Zk :

Ẑk = XV̂k , (5)

where

V̂k =
β̂

||β̂||2
. (6)

For more details on sparse PCA, see Zou et al. [?] and Hastie et al. [?].
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Sparse Principal Component Analysis - Example (Breast.TCGA)

Implementation in R - ElasticNet

Sparse PCA is implemented in R in the elasticnet [?] package. In the following
example, we use data from R’s Bioconductor (Breast.TCGA).

Data: Breast.TCGA: Three databases (X1=mRNA, X2=miRNA and X3=Protein)
evaluated on 150 individuals:

X1=mRNA: (breast.TCGA$data.train$mRNA) n = 150, p = 200. (n << p)

X2=miRNA: (breast.TCGA$data.train$mRNA) n = 150, p = 184. (n << p)

X3=Protein: (breast.TCGA$data.train$mRNA) n = 150, p = 142. (n > p)

Subtypes of cancers: (breast.TCGA$data.train$subtype) basal: 45; Her2: 30; LumA:
75.
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Sparse Principal Component Analysis - Biplots

Multivariate Data Analysis MAE0330



17/1

Sparse Discriminant Analysis
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Discriminant Analysis

In discriminant analysis (Fisher linear), as we have grouped observations, we consider
the decomposition of the covariance matrix into two components: covariance due to
the between groups effect and covariance due to the within groups effect,
Σp×p = ΣBp×p +ΣWp×p . From this, we are interested in solving the following
optimization problem:

maxl
l ′ΣB l

l ′ΣW l
. (7)

In other words, we want to find vectors l such that maximize the ratio (??). This
problem is equivalent to finding the eigenvalues and eigenvectors of Σ−1

W ΣB , which is
equivalent to finding solutions of the determinant equation:

|Σ−1
W ΣB − λIp| = 0. (8)

We assume homoscedasticity in the groups.
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Sparse Discriminant Analysis I

However, in the case where n << p (big-p), the inverse of the covariance matrix within
groups, ΣW , does not exist (it is singular), since the rank of this matrix is in maximum
n. An alternative to correct the problem of the incomplete rank of Σw is to use Sparse
Discriminant Analysis (sDA). In the following, we present the sDA models proposed by
Witten et al. [?] and Clemmensen et al. [?].

Regularization through Ω matrix

We can find a positive-definite diagonal matrix Ω such that

|(ΣW +Ω)− dIp| = 0; d > 0. (9)

If all the eigenvalues of a matrix are positive, then it is invertible (non-singular).
Algorithms for obtaining the matrix Ω are discussed in Hastie et al. [?].
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Sparse Discriminant Analysis II

Hence our optimization problem, maxβk

β′
kΣBβk

β′
kΣW βk

, becomes:

maxβk

β′
kΣBβk

β′
k(ΣW +Ω)βk

. (10)

Equivalently, we can find a positive-definite matrix Ω such that the discriminant
vectors of the optimization problem

maxβk
{β′

kΣBβk}, (11)

where β′
k(ΣW +Ω)βk = 1 and β′

k(ΣW +Ω)βl = 0, ∀l < k , can be calculated, even
when n << p.
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Sparse Discriminant Analysis III

Furthermore, we want the load vectors (discriminant vectors) βk to be sparse. A way
to obtain these vectors is by applying the ℓ1 (LASSO) penalty to the previous
optimization problem, resulting in the following problem:

maxβk
{β′

kΣBβk − γ||βk ||1}, (12)

where β′
k(ΣW +Ω)βk = 1 and β′

k(ΣW +Ω)βl = 0, ∀l < k , can be calculated, even
when n << p. This method was proposed by Witten and Tibshirani [?].
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Sparse Discriminant Analysis IV

Another sparse discriminant analysis (sDA) method, proposed by Clemmensen et al.
[?], is defined sequentially as follows. The k-th pair (θk , βk) is the solution to the
problem:

minβk ,θk

{
||Gθk − Xβk ||22 + γβ′

kΩβk + λ||βk ||1
}
, (13)

where 1
nθ

′
kG

′Gθk = 1 and θ′kG
′Gθl = 0, ∀l < k , where θkN×1

are the group weight
vectors, Gn×N is a group incidence matrix (composed by 0’s and 1’s) and γ and λ are
the non-negative regularization and penalization parameters. The ℓ1 penalty on βk
results in sparsity when λ is large.

The βk vector that resolves (??) is called the k-th discriminant vector of the sDA.
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Sparse Discriminant Analysis V

To solve (??), we use a simple iterative algorithm to obtain a local optimum for (??).
The algorithm involves keeping θk fixed and optimizing with respect to βk , and
keeping βk fixed and optimizing with respect to θk . For fixed θk , we obtain:

minβk

{
||Gθk − Xβk ||22 + γβ′

kΩβk + λ||βk ||1
}
. (14)

Note that for Ω = I , (??) is exactly an ElasticNet problem.
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Sparse Discriminant Analysis - Example (Breast.TCGA)

Implementation in R - sparseLDA

sDA is implemented in R in the sparseLDA package [?]. In the following example, we
use the same data (Breast.TCGA) that was used in the previous example.

Remember that the data from this set is classified into three groups of subtype of
cancers:

G1: basal: 45; G2: Her2: 30; G3: LumA: 75.

In other words, we have N = 3 groups, G = G1 ∪ G2 ∪ G3, with a total of
#(G ) = 45 + 30 + 75 = 150 individuals.

Multivariate Data Analysis MAE0330



25/1

Sparse Discriminant Analysis - Scores e Loads
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Sparse Discriminant Analysis - Classification
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Sparse Canonical Correlation Analysis

Multivariate Data Analysis MAE0330



28/1

Classical Canonical Correlation Analysis

Consider the data matrix Xn×(p+q) = (X1n×p X2n×q). Let X
1
p×1 and X 2

q×1 be the
original variables such that:

(
X 1

X 2

)
∼iid

(
µ =

(
µ1

µ2

)
,Σ =

(
Σ11 Σ12

Σ21 Σ22

))
.

Canonical correlation analysis aims to solve the following optimization problem: find
vectors a, b such that maximize the correlation coefficient Corr(a′X 1, b′X 2), that is,

maxa,b

{ Cov(a′X 1, b′X 2)√
Cov(a′X 1)

√
Cov(b′X 2)

}
= maxa,b

{ a′Σ12b√
a′Σ11a

√
b′Σ22b

}
. (15)
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Sparse Canonical Correlation Analysis

However, when we have n << p and n << q, occurs the impasse that the matrices Σ11 and
Σ22 are singular (non-invertible). Furthermore, classical CCA results in vectors U,V that are
not sparse, and these vectors are not unique if p or q exceeds n. An alternative to overcoming
this problem is to use Sparse Canonical Correlation Analysis (sCCA).

For sCCA, Witten et al. [?] proposed a penalized solution for the singular value decomposition
(SVD) of matrices, called Penalized Matrix Decomposition (PMD).

This method does not involve the inverses of the covariance matrices, but the cross-product
matrix X ′

1X2. Applying PMD to this cross-product matrix, we obtain a penalized method for
CCA.

To this aim, we will work with centered and scaled columns X1 and X2. Also, we will use
sample correlation, which, for centered x , y ∈ Rm, is given by:

cor(x , y) =
x ′y√

x ′x
√
y ′y

. (16)
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Sparse Canonical Correlation Analysis - PMD I

Penalized Matrix Decomposition (PMD)

Consider the SVD decomposition, X = UDV ′, U ′U = In, V
′V = Ip. Let Uk and Vk be

the column vectors of U and V , respectively, and dk be the diagonal elements of D. In
[?], the following generalization of the approximation of X through least squares (first
proposed by Eckart et al. [?]) was proposed:

minUk ,Vk ,dk{||X − dkUkV
′
k ||22}, (17)

with restrictions ||Uk ||22 ≤ 1, ||Uk ||1 ≤ c1; ||Vk ||22 ≤ 1, ||Vk ||1 ≤ c2.
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Sparse Canonical Correlation Analysis - PMD II

In [?], as a corollary of theorem 2.1, it was verified that the previous problem is
equivalent to the following maximization problem:

maxUk ,Vk
{U ′

kXVk}, (18)

with restrictions ||Uk ||22 ≤ 1, ||Uk ||1 ≤ c1; ||Vk ||22 ≤ 1, ||Vk ||1 ≤ c2.

One solution is to fix U and get V ; fix V and get U:

- Fixed Vk : maxUk
{U ′

kXVk}; ||Uk ||22 ≤ 1, ||Uk ||1 ≤ c1, 1 ≤ c1 ≤
√
n;

- Fixed Uk : maxVk
{U ′

kXVk}; ||Vk ||22 ≤ 1, ||Vk ||1 ≤ c2, 1 ≤ c2 ≤
√
p.

This algorithm is spelled PMD(L1, L1).
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Sparse Canonical Correlation Analysis - Penalized sCCA via PMD

Sparse canonical correlation analysis uses the PMD(L1, L1) algorithm (sCCA Penalized via
PMD), considering the SVD decomposition of the matrix X ′

1X2 (sample covariance matrix), as
follows (for the norm ℓ1):

maxak ,bk{(X1ak)
′X2bk} = maxak ,bk{a′kX ′

1X2bk}, (19)

with restrictions a′kX
′
1X1ak ≤ 1, ||ak ||1 ≤ c1 e b′kX

′
2X2bk ≤ 1, ||bk ||1 ≤ c2.

Assuming that for high-dimensional data the diagonal covariance matrix can be adopted
(CCA-P Diagonal), the previous restrictions become:

a′kX
′
1X1ak = a′kak ≤ 1, pois X ′

1X1 = Ip, e b′kX
′
2X2bk = b′kbk ≤ 1, pois X ′

2X2 = Iq.

Another approach to sCCA can be found in Suo et al. [?].
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Sparse Canonical Correlation Analysis - Example (Breast.TCGA)

Implementation in R - PMA

sCCA is implemented in R in the PMA (Penalized Multivariate Analysis) package [?].
In the following example, we use the same data (Breast.TCGA) that was used in the
previous two examples. However, we now want to analyze the pairwise correlation of
the three multivariate databases:

Integration X1 X2: maxa,b{cor(X1a,X2b)}

Integration X1 X3: maxa,b{cor(X1a,X3b)}

Integration X2 X3: maxa,b{cor(X2a,X3b)}
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Sparse Canonical Correlation Analysis - sCCA on X1 X2
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